If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(3(x^2))+4x-4=0
determiningTheFunctionDomain 3x^2+4x-4=0
a = 3; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·3·(-4)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8}{2*3}=\frac{-12}{6} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8}{2*3}=\frac{4}{6} =2/3 $
| 5-3z=2z+1 | | 9x+7-3x=7-2x-8 | | 6-2m=18 | | 12-(x+3)=5x-9 | | r/9=14 | | 3x+28=88 | | 3.4=13y | | 10-(3x-2)=x | | 10x+6=2(3x-3) | | 5+-9+5n=6+-69 | | 3x-15=38 | | 5x-(5x-5)=10 | | 72=-4(3z) | | 2(-3x+7)=10 | | 3n-14=65 | | 6-(x+2)=10 | | F(x)=3x/(4x^2-16) | | 28=18-2x | | -14=a/10 | | (s+5)=0 | | 7t+5t=35+22-9 | | 1/4x-6=3/4x+6 | | 3/10x=81 | | u+4u=4=7 | | 2(3x+5=22 | | 6x-4=3(2x+5) | | 7x-16=x+ | | 27x+4+95=180 | | 4(-5+2x)=-68 | | 18x+(x-3)=468 | | 9x+51=21x-45 | | 3a=1=-3.6(a-1) |